Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Separable Temporal Convolution plus Temporally Pooled Attention for Lightweight High-performance Keyword Spotting (2108.12146v1)

Published 27 Aug 2021 in cs.SD and eess.AS

Abstract: Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. In this paper, we propose a temporally pooled attention module which can capture global features better than the AveragePool. Besides, we design a separable temporal convolution network which leverages depthwise separable and temporal convolution to reduce the number of parameter and calculations. Finally, taking advantage of separable temporal convolution and temporally pooled attention, a efficient neural network (ST-AttNet) is designed for KWS system. We evaluate the models on the publicly available Google speech commands data sets V1. The number of parameters of proposed model (48K) is 1/6 of state-of-the-art TC-ResNet14-1.5 model (305K). The proposed model achieves a 96.6% accuracy, which is comparable to the TC-ResNet14-1.5 model (96.6%).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.