Papers
Topics
Authors
Recent
2000 character limit reached

Separable Temporal Convolution plus Temporally Pooled Attention for Lightweight High-performance Keyword Spotting (2108.12146v1)

Published 27 Aug 2021 in cs.SD and eess.AS

Abstract: Keyword spotting (KWS) on mobile devices generally requires a small memory footprint. However, most current models still maintain a large number of parameters in order to ensure good performance. In this paper, we propose a temporally pooled attention module which can capture global features better than the AveragePool. Besides, we design a separable temporal convolution network which leverages depthwise separable and temporal convolution to reduce the number of parameter and calculations. Finally, taking advantage of separable temporal convolution and temporally pooled attention, a efficient neural network (ST-AttNet) is designed for KWS system. We evaluate the models on the publicly available Google speech commands data sets V1. The number of parameters of proposed model (48K) is 1/6 of state-of-the-art TC-ResNet14-1.5 model (305K). The proposed model achieves a 96.6% accuracy, which is comparable to the TC-ResNet14-1.5 model (96.6%).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.