Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A method of supervised learning from conflicting data with hidden contexts (2108.12113v3)

Published 27 Aug 2021 in cs.LG

Abstract: Conventional supervised learning assumes a stable input-output relationship. However, this assumption fails in open-ended training settings where the input-output relationship depends on hidden contexts. In this work, we formulate a more general supervised learning problem in which training data is drawn from multiple unobservable domains, each potentially exhibiting distinct input-output maps. This inherent conflict in data renders standard empirical risk minimization training ineffective. To address this challenge, we propose a method LEAF that introduces an allocation function, which learns to assign conflicting data to different predictive models. We establish a connection between LEAF and a variant of the Expectation-Maximization algorithm, allowing us to derive an analytical expression for the allocation function. Finally, we provide a theoretical analysis of LEAF and empirically validate its effectiveness on both synthetic and real-world tasks involving conflicting data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.