Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximation algorithms for the random-field Ising model (2108.11889v1)

Published 26 Aug 2021 in cs.DS and math.PR

Abstract: Approximating the partition function of the ferromagnetic Ising model with general external fields is known to be #BIS-hard in the worst case, even for bounded-degree graphs, and it is widely believed that no polynomial-time approximation scheme exists. This motivates an average-case question: are there classes of instances for which polynomial-time approximation schemes exist? We investigate this question for the random field Ising model on graphs with maximum degree $\Delta$. We establish the existence of fully polynomial-time approximation schemes and samplers with high probability over the random fields if the external fields are IID Gaussians with variance larger than a constant depending only on the inverse temperature and $\Delta$. The main challenge comes from the positive density of vertices at which the external field is small. These regions, which may have connected components of size $\Theta(\log n)$, are a barrier to algorithms based on establishing a zero-free region, and cause worst-case analyses of Glauber dynamics to fail. The analysis of our algorithm is based on percolation on a self-avoiding walk tree.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.