Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

When Do Contrastive Learning Signals Help Spatio-Temporal Graph Forecasting? (2108.11873v2)

Published 26 Aug 2021 in cs.LG and cs.AI

Abstract: Deep learning models are modern tools for spatio-temporal graph (STG) forecasting. Though successful, we argue that data scarcity is a key factor limiting their recent improvements. Meanwhile, contrastive learning has been an effective method for providing self-supervision signals and addressing data scarcity in various domains. In view of this, one may ask: can we leverage the additional signals from contrastive learning to alleviate data scarcity, so as to benefit STG forecasting? To answer this question, we present the first systematic exploration on incorporating contrastive learning into STG forecasting. Specifically, we first elaborate two potential schemes for integrating contrastive learning. We then propose two feasible and efficient designs of contrastive tasks that are performed on the node or graph level. The empirical study on STG benchmarks demonstrates that integrating graph-level contrast with the joint learning scheme achieves the best performance. In addition, we introduce four augmentations for STG data, which perturb the data in terms of graph structure, time domain, and frequency domain. Experimental results reveal that the model is not sensitive to the proposed augmentations' semantics. Lastly, we extend the classic contrastive loss via a rule-based strategy that filters out the most semantically similar negatives, yielding performance gains. We also provide explanations and insights based on the above experimental findings. Code is available at https://github.com/liuxu77/STGCL.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube