Probing Pre-trained Auto-regressive Language Models for Named Entity Typing and Recognition (2108.11857v2)
Abstract: Despite impressive results of LLMs for named entity recognition (NER), their generalization to varied textual genres, a growing entity type set, and new entities remains a challenge. Collecting thousands of annotations in each new case for training or fine-tuning is expensive and time-consuming. In contrast, humans can easily identify named entities given some simple instructions. Inspired by this, we challenge the reliance on large datasets and study pre-trained LLMs for NER in a meta-learning setup. First, we test named entity typing (NET) in a zero-shot transfer scenario. Then, we perform NER by giving few examples at inference. We propose a method to select seen and rare / unseen names when having access only to the pre-trained model and report results on these groups. The results show: auto-regressive LLMs as meta-learners can perform NET and NER fairly well especially for regular or seen names; name irregularity when often present for a certain entity type can become an effective exploitable cue; names with words foreign to the model have the most negative impact on results; the model seems to rely more on name than context cues in few-shot NER.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.