Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-Tuning Pretrained Language Models With Label Attention for Biomedical Text Classification (2108.11809v3)

Published 26 Aug 2021 in cs.CL and cs.LG

Abstract: The massive scale and growth of textual biomedical data have made its indexing and classification increasingly important. However, existing research on this topic mainly utilized convolutional and recurrent neural networks, which generally achieve inferior performance than the novel transformers. On the other hand, systems that apply transformers only focus on the target documents, overlooking the rich semantic information that label descriptions contain. To address this gap, we develop a transformer-based biomedical text classifier that considers label information. The system achieves this with a label attention module incorporated into the fine-tuning process of pretrained LLMs (PTMs). Our results on two public medical datasets show that the proposed fine-tuning scheme outperforms the vanilla PTMs and state-of-the-art models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.