Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Identification of the Resting Position Based on EGG, ECG, Respiration Rate and SpO2 Using Stacked Ensemble Learning (2108.11604v1)

Published 26 Aug 2021 in cs.LG, cs.AI, eess.SP, q-bio.NC, and stat.ML

Abstract: Rest is essential for a high-level physiological and psychological performance. It is also necessary for the muscles to repair, rebuild, and strengthen. There is a significant correlation between the quality of rest and the resting posture. Therefore, identification of the resting position is of paramount importance to maintain a healthy life. Resting postures can be classified into four basic categories: Lying on the back (supine), facing of the left / right sides and free-fall position. The later position is already considered to be an unhealthy posture by researchers equivocally and hence can be eliminated. In this paper, we analyzed the other three states of resting position based on the data collected from the physiological parameters: Electrogastrogram (EGG), Electrocardiogram (ECG), Respiration Rate, Heart Rate, and Oxygen Saturation (SpO2). Based on these parameters, the resting position is classified using a hybrid stacked ensemble machine learning model designed using the Decision tree, Random Forest, and Xgboost algorithms. Our study demonstrates a 100% accurate prediction of the resting position using the hybrid model. The proposed method of identifying the resting position based on physiological parameters has the potential to be integrated into wearable devices. This is a low cost, highly accurate and autonomous technique to monitor the body posture while maintaining the user privacy by eliminating the use of RGB camera conventionally used to conduct the polysomnography (sleep Monitoring) or resting position studies.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube