Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Adaptive Control of Differentially Private Linear Quadratic Systems (2108.11563v1)

Published 26 Aug 2021 in cs.LG

Abstract: In this paper, we study the problem of regret minimization in reinforcement learning (RL) under differential privacy constraints. This work is motivated by the wide range of RL applications for providing personalized service, where privacy concerns are becoming paramount. In contrast to previous works, we take the first step towards non-tabular RL settings, while providing a rigorous privacy guarantee. In particular, we consider the adaptive control of differentially private linear quadratic (LQ) systems. We develop the first private RL algorithm, PRL, which is able to attain a sub-linear regret while guaranteeing privacy protection. More importantly, the additional cost due to privacy is only on the order of $\frac{\ln(1/\delta){1/4}}{\epsilon{1/2}}$ given privacy parameters $\epsilon, \delta > 0$. Through this process, we also provide a general procedure for adaptive control of LQ systems under changing regularizers, which not only generalizes previous non-private controls, but also serves as the basis for general private controls.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.