Papers
Topics
Authors
Recent
2000 character limit reached

Bilateral Denoising Diffusion Models (2108.11514v3)

Published 26 Aug 2021 in cs.LG, cs.AI, cs.SD, eess.AS, and eess.SP

Abstract: Denoising diffusion probabilistic models (DDPMs) have emerged as competitive generative models yet brought challenges to efficient sampling. In this paper, we propose novel bilateral denoising diffusion models (BDDMs), which take significantly fewer steps to generate high-quality samples. From a bilateral modeling objective, BDDMs parameterize the forward and reverse processes with a score network and a scheduling network, respectively. We show that a new lower bound tighter than the standard evidence lower bound can be derived as a surrogate objective for training the two networks. In particular, BDDMs are efficient, simple-to-train, and capable of further improving any pre-trained DDPM by optimizing the inference noise schedules. Our experiments demonstrated that BDDMs can generate high-fidelity samples with as few as 3 sampling steps and produce comparable or even higher quality samples than DDPMs using 1000 steps with only 16 sampling steps (a 62x speedup).

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.