Papers
Topics
Authors
Recent
2000 character limit reached

On Approximate Nearest Neighbour Selection for Multi-Stage Dense Retrieval (2108.11480v1)

Published 25 Aug 2021 in cs.IR

Abstract: Dense retrieval, which describes the use of contextualised LLMs such as BERT to identify documents from a collection by leveraging approximate nearest neighbour (ANN) techniques, has been increasing in popularity. Two families of approaches have emerged, depending on whether documents and queries are represented by single or multiple embeddings. ColBERT, the exemplar of the latter, uses an ANN index and approximate scores to identify a set of candidate documents for each query embedding, which are then re-ranked using accurate document representations. In this manner, a large number of documents can be retrieved for each query, hindering the efficiency of the approach. In this work, we investigate the use of ANN scores for ranking the candidate documents, in order to decrease the number of candidate documents being fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, by cutting of the candidate set by using the approximate scores to only 200 documents, we can still obtain an effective ranking without statistically significant differences in effectiveness, and resulting in a 2x speedup in efficiency.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 7 likes about this paper.