Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ML-Assisted UE Positioning: Performance Analysis and 5G Architecture Enhancements (2108.11365v1)

Published 25 Aug 2021 in cs.NI and eess.SP

Abstract: Artificial intelligence and data-driven networks will be integral part of 6G systems. In this article, we comprehensively discuss implementation challenges and need for architectural changes in 5G radio access networks for integrating ML solutions. As an example use case, we investigate user equipment (UE) positioning assisted by deep learning (DL) in 5G and beyond networks. As compared to state of the art positioning algorithms used in today's networks, radio signal fingerprinting and ML assisted positioning requires smaller additional feedback overhead; and the positioning estimates are made directly inside the radio access network (RAN), thereby assisting in radio resource management. In this regard, we study ML-assisted positioning methods and evaluate their performance using system level simulations for an outdoor scenario. The study is based on the use of raytracing tool, a 3GPP 5G NR compliant system level simulator and DL framework to estimate positioning accuracy of the UE. We evaluate and compare performance of various DL models and show mean positioning error in the range of 1-1.5m for a 2-hidden layer DL architecture with appropriate feature-modeling. Building on our performance analysis, we discuss pros and cons of various architectures to implement ML solutions for future networks and draw conclusions on the most suitable architecture.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.