Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

S&P 500 Stock Price Prediction Using Technical, Fundamental and Text Data (2108.10826v2)

Published 24 Aug 2021 in stat.ML and cs.LG

Abstract: We summarized both common and novel predictive models used for stock price prediction and combined them with technical indices, fundamental characteristics and text-based sentiment data to predict S&P stock prices. A 66.18% accuracy in S&P 500 index directional prediction and 62.09% accuracy in individual stock directional prediction was achieved by combining different machine learning models such as Random Forest and LSTM together into state-of-the-art ensemble models. The data we use contains weekly historical prices, finance reports, and text information from news items associated with 518 different common stocks issued by current and former S&P 500 large-cap companies, from January 1, 2000 to December 31, 2019. Our study's innovation includes utilizing deep LLMs to categorize and infer financial news item sentiment; fusing different models containing different combinations of variables and stocks to jointly make predictions; and overcoming the insufficient data problem for machine learning models in time series by using data across different stocks.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.