Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Understanding the Basis of Graph Convolutional Neural Networks via an Intuitive Matched Filtering Approach (2108.10751v1)

Published 23 Aug 2021 in cs.LG, cs.AI, cs.IT, cs.NE, and math.IT

Abstract: Graph Convolutional Neural Networks (GCNN) are becoming a preferred model for data processing on irregular domains, yet their analysis and principles of operation are rarely examined due to the black box nature of NNs. To this end, we revisit the operation of GCNNs and show that their convolution layers effectively perform matched filtering of input data with the chosen patterns (features). This allows us to provide a unifying account of GCNNs through a matched filter perspective, whereby the nonlinear ReLU and max-pooling layers are also discussed within the matched filtering framework. This is followed by a step-by-step guide on information propagation and learning in GCNNs. It is also shown that standard CNNs and fully connected NNs can be obtained as a special case of GCNNs. A carefully chosen numerical example guides the reader through the various steps of GCNN operation and learning both visually and numerically.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.