Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improvement of a Prediction Model for Heart Failure Survival through Explainable Artificial Intelligence (2108.10717v1)

Published 20 Aug 2021 in cs.LG and cs.AI

Abstract: Cardiovascular diseases and their associated disorder of heart failure are one of the major death causes globally, being a priority for doctors to detect and predict its onset and medical consequences. AI allows doctors to discover clinical indicators and enhance their diagnosis and treatments. Specifically, explainable AI offers tools to improve the clinical prediction models that experience poor interpretability of their results. This work presents an explainability analysis and evaluation of a prediction model for heart failure survival by using a dataset that comprises 299 patients who suffered heart failure. The model employs a data workflow pipeline able to select the best ensemble tree algorithm as well as the best feature selection technique. Moreover, different post-hoc techniques have been used for the explainability analysis of the model. The paper's main contribution is an explainability-driven approach to select the best prediction model for HF survival based on an accuracy-explainability balance. Therefore, the most balanced explainable prediction model implements an Extra Trees classifier over 5 selected features (follow-up time, serum creatinine, ejection fraction, age and diabetes) out of 12, achieving a balanced-accuracy of 85.1% and 79.5% with cross-validation and new unseen data respectively. The follow-up time is the most influencing feature followed by serum-creatinine and ejection-fraction. The explainable prediction model for HF survival presented in this paper would improve a further adoption of clinical prediction models by providing doctors with intuitions to better understand the reasoning of, usually, black-box AI clinical solutions, and make more reasonable and data-driven decisions.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.