Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time Dependence in Kalman Filter Tuning (2108.10712v1)

Published 21 Aug 2021 in eess.SY and cs.SY

Abstract: In this paper, we propose an approach to address the problems with ambiguity in tuning the process and observation noises for a discrete-time linear Kalman filter. Conventional approaches to tuning (e.g. using normalized estimation error squared and covariance minimization) compute empirical measures of filter performance and the parameter are selected manually or selected using some kind of optimization algorithm to maximize these measures of performance. However, there are two challenges with this approach. First, in theory, many of these measures do not guarantee a unique solution due to observability issues. Second, in practice, empirically computed statistical quantities can be very noisy due to a finite number of samples. We propose a method to overcome these limitations. Our method has two main parts to it. The first is to ensure that the tuning problem has a single unique solution. We achieve this by simultaneously tuning the filter over multiple different prediction intervals. Although this yields a unique solution, practical issues (such as sampling noise) mean that it cannot be directly applied. Therefore, we use Bayesian Optimization. This technique handles noisy data and the local minima that it introduces.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.