Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Measuring Wikipedia Article Quality in One Dimension by Extending ORES with Ordinal Regression (2108.10684v2)

Published 15 Aug 2021 in cs.CL, cs.CY, and cs.LG

Abstract: Organizing complex peer production projects and advancing scientific knowledge of open collaboration each depend on the ability to measure quality. Article quality ratings on English language Wikipedia have been widely used by both Wikipedia community members and academic researchers for purposes like tracking knowledge gaps and studying how political polarization shapes collaboration. Even so, measuring quality presents many methodological challenges. The most widely used systems use labels on discrete ordinal scales when assessing quality, but such labels can be inconvenient for statistics and machine learning. Prior work handles this by assuming that different levels of quality are "evenly spaced" from one another. This assumption runs counter to intuitions about the relative degrees of effort needed to raise Wikipedia encyclopedia articles to different quality levels. Furthermore, models from prior work are fit to datasets that oversample high-quality articles. This limits their accuracy for representative samples of articles or revisions. I describe a technique extending the Wikimedia Foundations' ORES article quality model to address these limitations. My method uses weighted ordinal regression models to construct one-dimensional continuous measures of quality. While scores from my technique and from prior approaches are correlated, my approach improves accuracy for research datasets and provides evidence that the "evenly spaced" assumption is unfounded in practice on English Wikipedia. I conclude with recommendations for using quality scores in future research and include the full code, data, and models.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Youtube Logo Streamline Icon: https://streamlinehq.com