Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Pooling Architecture Search for Graph Classification (2108.10587v1)

Published 24 Aug 2021 in cs.LG

Abstract: Graph classification is an important problem with applications across many domains, like chemistry and bioinformatics, for which graph neural networks (GNNs) have been state-of-the-art (SOTA) methods. GNNs are designed to learn node-level representation based on neighborhood aggregation schemes, and to obtain graph-level representation, pooling methods are applied after the aggregation operation in existing GNN models to generate coarse-grained graphs. However,due to highly diverse applications of graph classification, and the performance of existing pooling methods vary on different graphs. In other words, it is a challenging problem to design a universal pooling architecture to perform well in most cases, leading to a demand for data-specific pooling methods in real-world applications. To address this problem, we propose to use neural architecture search (NAS) to search for adaptive pooling architectures for graph classification. Firstly we designed a unified framework consisting of four modules: Aggregation, Pooling, Readout, and Merge, which can cover existing human-designed pooling methods for graph classification. Based on this framework, a novel search space is designed by incorporating popular operations in human-designed architectures. Then to enable efficient search, a coarsening strategy is proposed to continuously relax the search space, thus a differentiable search method can be adopted. Extensive experiments on six real-world datasets from three domains are conducted, and the results demonstrate the effectiveness and efficiency of the proposed framework.

Citations (65)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.