Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Query Embedding Pruning for Dense Retrieval (2108.10341v1)

Published 23 Aug 2021 in cs.IR

Abstract: Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised LLMs such as BERT, but also to use such models to identify documents from the collection in the first place. However, when using dense retrieval approaches that use multiple embedded representations for each query, a large number of documents can be retrieved for each query, hindering the efficiency of the method. Hence, this work is the first to consider efficiency improvements in the context of a dense retrieval approach (namely ColBERT), by pruning query term embeddings that are estimated not to be useful for retrieving relevant documents. Our proposed query embeddings pruning reduces the cost of the dense retrieval operation, as well as reducing the number of documents that are retrieved and hence require to be fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, when reducing the number of query embeddings used from 32 to 3 based on the collection frequency of the corresponding tokens, query embedding pruning results in no statistically significant differences in effectiveness, while reducing the number of documents retrieved by 70%. In terms of mean response time for the end-to-end to end system, this results in a 2.65x speedup.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube