Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Kryptonite: An Adversarial Attack Using Regional Focus (2108.10251v1)

Published 23 Aug 2021 in cs.CR

Abstract: With the Rise of Adversarial Machine Learning and increasingly robust adversarial attacks, the security of applications utilizing the power of Machine Learning has been questioned. Over the past few years, applications of Deep Learning using Deep Neural Networks(DNN) in several fields including Medical Diagnosis, Security Systems, Virtual Assistants, etc. have become extremely commonplace, and hence become more exposed and susceptible to attack. In this paper, we present a novel study analyzing the weaknesses in the security of deep learning systems. We propose 'Kryptonite', an adversarial attack on images. We explicitly extract the Region of Interest (RoI) for the images and use it to add imperceptible adversarial perturbations to images to fool the DNN. We test our attack on several DNN's and compare our results with state of the art adversarial attacks like Fast Gradient Sign Method (FGSM), DeepFool (DF), Momentum Iterative Fast Gradient Sign Method (MIFGSM), and Projected Gradient Descent (PGD). The results obtained by us cause a maximum drop in network accuracy while yielding minimum possible perturbation and in considerably less amount of time per sample. We thoroughly evaluate our attack against three adversarial defence techniques and the promising results showcase the efficacy of our attack.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.