Rényi entropy and variance comparison for symmetric log-concave random variables (2108.10100v2)
Abstract: We show that for any $\alpha>0$ the R\'enyi entropy of order $\alpha$ is minimized, among all symmetric log-concave random variables with fixed variance, either for a uniform distribution or for a two sided exponential distribution. The first case occurs for $\alpha \in (0,\alpha*]$ and the second case for $\alpha \in [\alpha*,\infty)$, where $\alpha*$ satisfies the equation $\frac{1}{\alpha*-1}\log \alpha*= \frac12 \log 6$, that is $\alpha* \approx 1.241$. Using those results, we prove that one-sided exponential distribution minimizes R\'enyi entropy of order $\alpha \geq 2$ among all log-concave random variables with fixed variance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.