Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Realistic Image Synthesis with Configurable 3D Scene Layouts (2108.10031v2)

Published 23 Aug 2021 in cs.CV

Abstract: Recent conditional image synthesis approaches provide high-quality synthesized images. However, it is still challenging to accurately adjust image contents such as the positions and orientations of objects, and synthesized images often have geometrically invalid contents. To provide users with rich controllability on synthesized images in the aspect of 3D geometry, we propose a novel approach to realistic-looking image synthesis based on a configurable 3D scene layout. Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network that synthesizes color values for the input 3D scene. With the trained painting network, realistic-looking images for the input 3D scene can be rendered and manipulated. To train the painting network without 3D color supervision, we exploit an off-the-shelf 2D semantic image synthesis method. In experiments, we show that our approach produces images with geometrically correct structures and supports geometric manipulation such as the change of the viewpoint and object poses as well as manipulation of the painting style.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.