Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Farsighted Probabilistic Sampling: A General Strategy for Boosting Local Search MaxSAT Solvers (2108.09988v5)

Published 23 Aug 2021 in cs.AI

Abstract: Local search has been demonstrated as an efficient approach for two practical generalizations of the MaxSAT problem, namely Partial MaxSAT (PMS) and Weighted PMS (WPMS). In this work, we observe that most local search (W)PMS solvers usually flip a single variable per iteration. Such a mechanism may lead to relatively low-quality local optimal solutions, and may limit the diversity of search directions to escape from local optima. To address this issue, we propose a general strategy, called farsighted probabilistic sampling (FPS), to replace the single flipping mechanism so as to boost the local search (W)PMS algorithms. FPS considers the benefit of continuously flipping a pair of variables in order to find higher-quality local optimal solutions. Moreover, FPS proposes an effective approach to escape from local optima by preferring the best to flip among the best sampled single variable and the best sampled variable pair. Extensive experiments demonstrate that our proposed FPS strategy significantly improves the state-of-the-art (W)PMS solvers, and FPS has an excellent generalization capability to various local search MaxSAT solvers.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub