Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using Trajectory Compression Rate to Predict Changes in Cybersickness in Virtual Reality Games (2108.09538v1)

Published 21 Aug 2021 in cs.HC

Abstract: Identifying cybersickness in virtual reality (VR) applications such as games in a fast, precise, non-intrusive, and non-disruptive way remains challenging. Several factors can cause cybersickness, and their identification will help find its origins and prevent or minimize it. One such factor is virtual movement. Movement, whether physical or virtual, can be represented in different forms. One way to represent and store it is with a temporally annotated point sequence. Because a sequence is memory-consuming, it is often preferable to save it in a compressed form. Compression allows redundant data to be eliminated while still preserving changes in speed and direction. Since changes in direction and velocity in VR can be associated with cybersickness, changes in compression rate can likely indicate changes in cybersickness levels. In this research, we explore whether quantifying changes in virtual movement can be used to estimate variation in cybersickness levels of VR users. We investigate the correlation between changes in the compression rate of movement data in two VR games with changes in players' cybersickness levels captured during gameplay. Our results show (1) a clear correlation between changes in compression rate and cybersickness, and(2) that a machine learning approach can be used to identify these changes. Finally, results from a second experiment show that our approach is feasible for cybersickness inference in games and other VR applications that involve movement.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.