Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A computational study on imputation methods for missing environmental data (2108.09500v1)

Published 21 Aug 2021 in cs.DB, cs.LG, and stat.AP

Abstract: Data acquisition and recording in the form of databases are routine operations. The process of collecting data, however, may experience irregularities, resulting in databases with missing data. Missing entries might alter analysis efficiency and, consequently, the associated decision-making process. This paper focuses on databases collecting information related to the natural environment. Given the broad spectrum of recorded activities, these databases typically are of mixed nature. It is therefore relevant to evaluate the performance of missing data processing methods considering this characteristic. In this paper we investigate the performances of several missing data imputation methods and their application to the problem of missing data in environment. A computational study was performed to compare the method missForest (MF) with two other imputation methods, namely Multivariate Imputation by Chained Equations (MICE) and K-Nearest Neighbors (KNN). Tests were made on 10 pretreated datasets of various types. Results revealed that MF generally outperformed MICE and KNN in terms of imputation errors, with a more pronounced performance gap for mixed typed databases where MF reduced the imputation error up to 150%, when compared to the other methods. KNN was usually the fastest method. MF was then successfully applied to a case study on Quebec wastewater treatment plants performance monitoring. We believe that the present study demonstrates the pertinence of using MF as imputation method when dealing with missing environmental data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.