Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

MM-ViT: Multi-Modal Video Transformer for Compressed Video Action Recognition (2108.09322v2)

Published 20 Aug 2021 in cs.CV

Abstract: This paper presents a pure transformer-based approach, dubbed the Multi-Modal Video Transformer (MM-ViT), for video action recognition. Different from other schemes which solely utilize the decoded RGB frames, MM-ViT operates exclusively in the compressed video domain and exploits all readily available modalities, i.e., I-frames, motion vectors, residuals and audio waveform. In order to handle the large number of spatiotemporal tokens extracted from multiple modalities, we develop several scalable model variants which factorize self-attention across the space, time and modality dimensions. In addition, to further explore the rich inter-modal interactions and their effects, we develop and compare three distinct cross-modal attention mechanisms that can be seamlessly integrated into the transformer building block. Extensive experiments on three public action recognition benchmarks (UCF-101, Something-Something-v2, Kinetics-600) demonstrate that MM-ViT outperforms the state-of-the-art video transformers in both efficiency and accuracy, and performs better or equally well to the state-of-the-art CNN counterparts with computationally-heavy optical flow.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)