Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

TabGNN: Multiplex Graph Neural Network for Tabular Data Prediction (2108.09127v1)

Published 20 Aug 2021 in cs.LG

Abstract: Tabular data prediction (TDP) is one of the most popular industrial applications, and various methods have been designed to improve the prediction performance. However, existing works mainly focus on feature interactions and ignore sample relations, e.g., users with the same education level might have a similar ability to repay the debt. In this work, by explicitly and systematically modeling sample relations, we propose a novel framework TabGNN based on recently popular graph neural networks (GNN). Specifically, we firstly construct a multiplex graph to model the multifaceted sample relations, and then design a multiplex graph neural network to learn enhanced representation for each sample. To integrate TabGNN with the tabular solution in our company, we concatenate the learned embeddings and the original ones, which are then fed to prediction models inside the solution. Experiments on eleven TDP datasets from various domains, including classification and regression ones, show that TabGNN can consistently improve the performance compared to the tabular solution AutoFE in 4Paradigm.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube