Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

EqGNN: Equalized Node Opportunity in Graphs (2108.08800v1)

Published 19 Aug 2021 in cs.LG and cs.AI

Abstract: Graph neural networks (GNNs), has been widely used for supervised learning tasks in graphs reaching state-of-the-art results. However, little work was dedicated to creating unbiased GNNs, i.e., where the classification is uncorrelated with sensitive attributes, such as race or gender. Some ignore the sensitive attributes or optimize for the criteria of statistical parity for fairness. However, it has been shown that neither approaches ensure fairness, but rather cripple the utility of the prediction task. In this work, we present a GNN framework that allows optimizing representations for the notion of Equalized Odds fairness criteria. The architecture is composed of three components: (1) a GNN classifier predicting the utility class, (2) a sampler learning the distribution of the sensitive attributes of the nodes given their labels. It generates samples fed into a (3) discriminator that discriminates between true and sampled sensitive attributes using a novel "permutation loss" function. Using these components, we train a model to neglect information regarding the sensitive attribute only with respect to its label. To the best of our knowledge, we are the first to optimize GNNs for the equalized odds criteria. We evaluate our classifier over several graph datasets and sensitive attributes and show our algorithm reaches state-of-the-art results.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.