Evaluating Multiple Guesses by an Adversary via a Tunable Loss Function (2108.08774v1)
Abstract: We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable $X$ on observing another correlated random variable $Y$. The adversary can make multiple (say, $k$) guesses. The adversary's guessing strategy is assumed to minimize $\alpha$-loss, a class of tunable loss functions parameterized by $\alpha$. It has been shown before that this loss function captures well known loss functions including the exponential loss ($\alpha=1/2$), the log-loss ($\alpha=1$) and the $0$-$1$ loss ($\alpha=\infty$). We completely characterize the optimal adversarial strategy and the resulting expected $\alpha$-loss, thereby recovering known results for $\alpha=\infty$. We define an information leakage measure from the $k$-guesses setup and derive a condition under which the leakage is unchanged from a single guess.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.