Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Evaluating Multiple Guesses by an Adversary via a Tunable Loss Function (2108.08774v1)

Published 19 Aug 2021 in cs.IT and math.IT

Abstract: We consider a problem of guessing, wherein an adversary is interested in knowing the value of the realization of a discrete random variable $X$ on observing another correlated random variable $Y$. The adversary can make multiple (say, $k$) guesses. The adversary's guessing strategy is assumed to minimize $\alpha$-loss, a class of tunable loss functions parameterized by $\alpha$. It has been shown before that this loss function captures well known loss functions including the exponential loss ($\alpha=1/2$), the log-loss ($\alpha=1$) and the $0$-$1$ loss ($\alpha=\infty$). We completely characterize the optimal adversarial strategy and the resulting expected $\alpha$-loss, thereby recovering known results for $\alpha=\infty$. We define an information leakage measure from the $k$-guesses setup and derive a condition under which the leakage is unchanged from a single guess.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.