Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning General Halfspaces with General Massart Noise under the Gaussian Distribution (2108.08767v2)

Published 19 Aug 2021 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: We study the problem of PAC learning halfspaces on $\mathbb{R}d$ with Massart noise under the Gaussian distribution. In the Massart model, an adversary is allowed to flip the label of each point $\mathbf{x}$ with unknown probability $\eta(\mathbf{x}) \leq \eta$, for some parameter $\eta \in [0,1/2]$. The goal is to find a hypothesis with misclassification error of $\mathrm{OPT} + \epsilon$, where $\mathrm{OPT}$ is the error of the target halfspace. This problem had been previously studied under two assumptions: (i) the target halfspace is homogeneous (i.e., the separating hyperplane goes through the origin), and (ii) the parameter $\eta$ is strictly smaller than $1/2$. Prior to this work, no nontrivial bounds were known when either of these assumptions is removed. We study the general problem and establish the following: For $\eta <1/2$, we give a learning algorithm for general halfspaces with sample and computational complexity $d{O_{\eta}(\log(1/\gamma))}\mathrm{poly}(1/\epsilon)$, where $\gamma =\max{\epsilon, \min{\mathbf{Pr}[f(\mathbf{x}) = 1], \mathbf{Pr}[f(\mathbf{x}) = -1]} }$ is the bias of the target halfspace $f$. Prior efficient algorithms could only handle the special case of $\gamma = 1/2$. Interestingly, we establish a qualitatively matching lower bound of $d{\Omega(\log(1/\gamma))}$ on the complexity of any Statistical Query (SQ) algorithm. For $\eta = 1/2$, we give a learning algorithm for general halfspaces with sample and computational complexity $O_\epsilon(1) d{O(\log(1/\epsilon))}$. This result is new even for the subclass of homogeneous halfspaces; prior algorithms for homogeneous Massart halfspaces provide vacuous guarantees for $\eta=1/2$. We complement our upper bound with a nearly-matching SQ lower bound of $d{\Omega(\log(1/\epsilon))}$, which holds even for the special case of homogeneous halfspaces.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.