Papers
Topics
Authors
Recent
2000 character limit reached

Semantic Compositional Learning for Low-shot Scene Graph Generation (2108.08600v1)

Published 19 Aug 2021 in cs.CV

Abstract: Scene graphs provide valuable information to many downstream tasks. Many scene graph generation (SGG) models solely use the limited annotated relation triples for training, leading to their underperformance on low-shot (few and zero) scenarios, especially on the rare predicates. To address this problem, we propose a novel semantic compositional learning strategy that makes it possible to construct additional, realistic relation triples with objects from different images. Specifically, our strategy decomposes a relation triple by identifying and removing the unessential component and composes a new relation triple by fusing with a semantically or visually similar object from a visual components dictionary, whilst ensuring the realisticity of the newly composed triple. Notably, our strategy is generic and can be combined with existing SGG models to significantly improve their performance. We performed a comprehensive evaluation on the benchmark dataset Visual Genome. For three recent SGG models, adding our strategy improves their performance by close to 50\%, and all of them substantially exceed the current state-of-the-art.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.