Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Few-shot Segmentation with Optimal Transport Matching and Message Flow (2108.08518v2)

Published 19 Aug 2021 in cs.CV

Abstract: We tackle the challenging task of few-shot segmentation in this work. It is essential for few-shot semantic segmentation to fully utilize the support information. Previous methods typically adopt masked average pooling over the support feature to extract the support clues as a global vector, usually dominated by the salient part and lost certain essential clues. In this work, we argue that every support pixel's information is desired to be transferred to all query pixels and propose a Correspondence Matching Network (CMNet) with an Optimal Transport Matching module to mine out the correspondence between the query and support images. Besides, it is critical to fully utilize both local and global information from the annotated support images. To this end, we propose a Message Flow module to propagate the message along the inner-flow inside the same image and cross-flow between support and query images, which greatly helps enhance the local feature representations. Experiments on PASCAL VOC 2012, MS COCO, and FSS-1000 datasets show that our network achieves new state-of-the-art few-shot segmentation performance.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.