Papers
Topics
Authors
Recent
2000 character limit reached

Improved Robustness and Safety for Pre-Adaptation of Meta Reinforcement Learning with Prior Regularization (2108.08448v2)

Published 19 Aug 2021 in cs.LG

Abstract: Meta Reinforcement Learning (Meta-RL) has seen substantial advancements recently. In particular, off-policy methods were developed to improve the data efficiency of Meta-RL techniques. \textit{Probabilistic embeddings for actor-critic RL} (PEARL) is a leading approach for multi-MDP adaptation problems. A major drawback of many existing Meta-RL methods, including PEARL, is that they do not explicitly consider the safety of the prior policy when it is exposed to a new task for the first time. Safety is essential for many real-world applications, including field robots and Autonomous Vehicles (AVs). In this paper, we develop the PEARL PLUS (PEARL$+$) algorithm, which optimizes the policy for both prior (pre-adaptation) safety and posterior (after-adaptation) performance. Building on top of PEARL, our proposed PEARL$+$ algorithm introduces a prior regularization term in the reward function and a new Q-network for recovering the state-action value under prior context assumptions, to improve the robustness to task distribution shift and safety of the trained network exposed to a new task for the first time. The performance of PEARL$+$ is validated by solving three safety-critical problems related to robots and AVs, including two MuJoCo benchmark problems. From the simulation experiments, we show that safety of the prior policy is significantly improved and more robust to task distribution shift compared to PEARL.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.