Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hyperbolic Hypergraphs for Sequential Recommendation (2108.08134v1)

Published 18 Aug 2021 in cs.SI

Abstract: Hypergraphs have been becoming a popular choice to model complex, non-pairwise, and higher-order interactions for recommender system. However, compared with traditional graph-based methods, the constructed hypergraphs are usually much sparser, which leads to a dilemma when balancing the benefits of hypergraphs and the modelling difficulty. Moreover, existing sequential hypergraph recommendation overlooks the temporal modelling among user relationships, which neglects rich social signals from the recommendation data. To tackle the above shortcomings of the existing hypergraph-based sequential recommendations, we propose a novel architecture named Hyperbolic Hypergraph representation learning method for Sequential Recommendation (H2SeqRec) with pre-training phase. Specifically, we design three self-supervised tasks to obtain the pre-training item embeddings to feed or fuse into the following recommendation architecture (with two ways to use the pre-trained embeddings). In the recommendation phase, we learn multi-scale item embeddings via a hierarchical structure to capture multiple time-span information. To alleviate the negative impact of sparse hypergraphs, we utilize a hyperbolic space-based hypergraph convolutional neural network to learn the dynamic item embeddings. Also, we design an item enhancement module to capture dynamic social information at each timestamp to improve effectiveness. Extensive experiments are conducted on two real-world datasets to prove the effectiveness and high performance of the model.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.