Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Boosting Salient Object Detection with Transformer-based Asymmetric Bilateral U-Net (2108.07851v6)

Published 17 Aug 2021 in cs.CV

Abstract: Existing salient object detection (SOD) methods mainly rely on U-shaped convolution neural networks (CNNs) with skip connections to combine the global contexts and local spatial details that are crucial for locating salient objects and refining object details, respectively. Despite great successes, the ability of CNNs in learning global contexts is limited. Recently, the vision transformer has achieved revolutionary progress in computer vision owing to its powerful modeling of global dependencies. However, directly applying the transformer to SOD is suboptimal because the transformer lacks the ability to learn local spatial representations. To this end, this paper explores the combination of transformers and CNNs to learn both global and local representations for SOD. We propose a transformer-based Asymmetric Bilateral U-Net (ABiU-Net). The asymmetric bilateral encoder has a transformer path and a lightweight CNN path, where the two paths communicate at each encoder stage to learn complementary global contexts and local spatial details, respectively. The asymmetric bilateral decoder also consists of two paths to process features from the transformer and CNN encoder paths, with communication at each decoder stage for decoding coarse salient object locations and fine-grained object details, respectively. Such communication between the two encoder/decoder paths enables AbiU-Net to learn complementary global and local representations, taking advantage of the natural merits of transformers and CNNs, respectively. Hence, ABiU-Net provides a new perspective for transformer-based SOD. Extensive experiments demonstrate that ABiU-Net performs favorably against previous state-of-the-art SOD methods. The code is available at https://github.com/yuqiuyuqiu/ABiU-Net.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.