Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Harnessing value from data science in business: ensuring explainability and fairness of solutions (2108.07714v1)

Published 10 Aug 2021 in cs.CY and cs.LG

Abstract: The paper introduces concepts of fairness and explainability (XAI) in artificial intelligence, oriented to solve a sophisticated business problems. For fairness, the authors discuss the bias-inducing specifics, as well as relevant mitigation methods, concluding with a set of recipes for introducing fairness in data-driven organizations. Additionally, for XAI, the authors audit specific algorithms paired with demonstrational business use-cases, discuss a plethora of techniques of explanations quality quantification and provide an overview of future research avenues.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.