Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient split-step schemes for fluid-structure interaction involving incompressible generalised Newtonian flows (2108.07477v2)

Published 17 Aug 2021 in cs.CE, math.DS, physics.comp-ph, and physics.flu-dyn

Abstract: Blood flow, dam or ship construction and numerous other problems in biomedical and general engineering involve incompressible flows interacting with elastic structures. Such interactions heavily influence the deformation and stress states which, in turn, affect the engineering design process. Therefore, any reliable model of such physical processes must consider the coupling of fluids and solids. However, complexity increases for non-Newtonian fluid models, as used, e.g., for blood or polymer flows. In these fluids, subtle differences in the local shear rate can have a drastic impact on the flow and hence on the coupled problem. There, existing (semi-)implicit solution strategies based on split-step or projection schemes for Newtonian fluids are not applicable, while extensions to non-Newtonian fluids can lead to substantial numerical overhead depending on the chosen fluid solver. To address these shortcomings, we present here a higher-order accurate, added-mass-stable fluid-structure interaction scheme centered around a split-step fluid solver. We compare several implicit and semi-implicit variants of the algorithm and verify convergence in space and time. Numerical examples show good performance in both benchmarks and an idealised setting of blood flow through an abdominal aortic aneurysm considering physiological parameters.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.