Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Rectangular Approximation and Stability of $2$-parameter Persistence Modules (2108.07429v1)

Published 17 Aug 2021 in cs.CG and math.AT

Abstract: One of the main reasons for topological persistence being useful in data analysis is that it is backed up by a stability (isometry) property: persistence diagrams of $1$-parameter persistence modules are stable in the sense that the bottleneck distance between two diagrams equals the interleaving distance between their generating modules. However, in multi-parameter setting this property breaks down in general. A simple special case of persistence modules called rectangle decomposable modules is known to admit a weaker stability property. Using this fact, we derive a stability-like property for $2$-parameter persistence modules. For this, first we consider interval decomposable modules and their optimal approximations with rectangle decomposable modules with respect to the bottleneck distance. We provide a polynomial time algorithm to exactly compute this optimal approximation which, together with the polynomial-time computable bottleneck distance among interval decomposable modules, provides a lower bound on the interleaving distance. Next, we leverage this result to derive a polynomial-time computable distance for general multi-parameter persistence modules which enjoys similar stability-like property. This distance can be viewed as a generalization of the matching distance defined in the literature.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.