Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

FARF: A Fair and Adaptive Random Forests Classifier (2108.07403v2)

Published 17 Aug 2021 in cs.LG and cs.AI

Abstract: As AI is used in more applications, the need to consider and mitigate biases from the learned models has followed. Most works in developing fair learning algorithms focus on the offline setting. However, in many real-world applications data comes in an online fashion and needs to be processed on the fly. Moreover, in practical application, there is a trade-off between accuracy and fairness that needs to be accounted for, but current methods often have multiple hyperparameters with non-trivial interaction to achieve fairness. In this paper, we propose a flexible ensemble algorithm for fair decision-making in the more challenging context of evolving online settings. This algorithm, called FARF (Fair and Adaptive Random Forests), is based on using online component classifiers and updating them according to the current distribution, that also accounts for fairness and a single hyperparameters that alters fairness-accuracy balance. Experiments on real-world discriminated data streams demonstrate the utility of FARF.

Citations (48)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.