Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Canonical View Representation for 3D Shape Recognition with Arbitrary Views (2108.07084v2)

Published 16 Aug 2021 in cs.CV and cs.AI

Abstract: In this paper, we focus on recognizing 3D shapes from arbitrary views, i.e., arbitrary numbers and positions of viewpoints. It is a challenging and realistic setting for view-based 3D shape recognition. We propose a canonical view representation to tackle this challenge. We first transform the original features of arbitrary views to a fixed number of view features, dubbed canonical view representation, by aligning the arbitrary view features to a set of learnable reference view features using optimal transport. In this way, each 3D shape with arbitrary views is represented by a fixed number of canonical view features, which are further aggregated to generate a rich and robust 3D shape representation for shape recognition. We also propose a canonical view feature separation constraint to enforce that the view features in canonical view representation can be embedded into scattered points in a Euclidean space. Experiments on the ModelNet40, ScanObjectNN, and RGBD datasets show that our method achieves competitive results under the fixed viewpoint settings, and significantly outperforms the applicable methods under the arbitrary view setting.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.