Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Legal perspective on possible fairness measures - A legal discussion using the example of hiring decisions (preprint) (2108.06918v1)

Published 16 Aug 2021 in cs.CY

Abstract: With the increasing use of AI in algorithmic decision making (e.g. based on neural networks), the question arises how bias can be excluded or mitigated. There are some promising approaches, but many of them are based on a "fair" ground truth, others are based on a subjective goal to be reached, which leads to the usual problem of how to define and compute "fairness". The different functioning of algorithmic decision making in contrast to human decision making leads to a shift from a process-oriented to a result-oriented discrimination assessment. We argue that with such a shift society needs to determine which kind of fairness is the right one to choose for which certain scenario. To understand the implications of such a determination we explain the different kinds of fairness concepts that might be applicable for the specific application of hiring decisions, analyze their pros and cons with regard to the respective fairness interpretation and evaluate them from a legal perspective (based on EU law).

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.