Papers
Topics
Authors
Recent
2000 character limit reached

Deep Adversarially-Enhanced k-Nearest Neighbors (2108.06797v2)

Published 15 Aug 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Recent works have theoretically and empirically shown that deep neural networks (DNNs) have an inherent vulnerability to small perturbations. Applying the Deep k-Nearest Neighbors (DkNN) classifier, we observe a dramatically increasing robustness-accuracy trade-off as the layer goes deeper. In this work, we propose a Deep Adversarially-Enhanced k-Nearest Neighbors (DAEkNN) method which achieves higher robustness than DkNN and mitigates the robustness-accuracy trade-off in deep layers through two key elements. First, DAEkNN is based on an adversarially trained model. Second, DAEkNN makes predictions by leveraging a weighted combination of benign and adversarial training data. Empirically, we find that DAEkNN improves both the robustness and the robustness-accuracy trade-off on MNIST and CIFAR-10 datasets.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.