Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Appropriate Fairness Perceptions? On the Effectiveness of Explanations in Enabling People to Assess the Fairness of Automated Decision Systems (2108.06500v1)

Published 14 Aug 2021 in cs.HC and cs.AI

Abstract: It is often argued that one goal of explaining automated decision systems (ADS) is to facilitate positive perceptions (e.g., fairness or trustworthiness) of users towards such systems. This viewpoint, however, makes the implicit assumption that a given ADS is fair and trustworthy, to begin with. If the ADS issues unfair outcomes, then one might expect that explanations regarding the system's workings will reveal its shortcomings and, hence, lead to a decrease in fairness perceptions. Consequently, we suggest that it is more meaningful to evaluate explanations against their effectiveness in enabling people to appropriately assess the quality (e.g., fairness) of an associated ADS. We argue that for an effective explanation, perceptions of fairness should increase if and only if the underlying ADS is fair. In this in-progress work, we introduce the desideratum of appropriate fairness perceptions, propose a novel study design for evaluating it, and outline next steps towards a comprehensive experiment.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.