Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimal Approximation with Sparse Neural Networks and Applications (2108.06467v1)

Published 14 Aug 2021 in cs.LG, cs.AI, and math.OC

Abstract: We use deep sparsely connected neural networks to measure the complexity of a function class in $L2(\mathbb Rd)$ by restricting connectivity and memory requirement for storing the neural networks. We also introduce representation system - a countable collection of functions to guide neural networks, since approximation theory with representation system has been well developed in Mathematics. We then prove the fundamental bound theorem, implying a quantity intrinsic to the function class itself can give information about the approximation ability of neural networks and representation system. We also provides a method for transferring existing theories about approximation by representation systems to that of neural networks, greatly amplifying the practical values of neural networks. Finally, we use neural networks to approximate B-spline functions, which are used to generate the B-spline curves. Then, we analyse the complexity of a class called $\beta$ cartoon-like functions using rate-distortion theory and wedgelets construction.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)