Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Fairness-Aware Learning with Imbalanced Data Streams (2108.06231v1)

Published 13 Aug 2021 in cs.LG and cs.AI

Abstract: Data-driven learning algorithms are employed in many online applications, in which data become available over time, like network monitoring, stock price prediction, job applications, etc. The underlying data distribution might evolve over time calling for model adaptation as new instances arrive and old instances become obsolete. In such dynamic environments, the so-called data streams, fairness-aware learning cannot be considered as a one-off requirement, but rather it should comprise a continual requirement over the stream. Recent fairness-aware stream classifiers ignore the problem of class imbalance, which manifests in many real-life applications, and mitigate discrimination mainly because they "reject" minority instances at large due to their inability to effectively learn all classes. In this work, we propose \ours, an online fairness-aware approach that maintains a valid and fair classifier over the stream. \ours~is an online boosting approach that changes the training distribution in an online fashion by monitoring stream's class imbalance and tweaks its decision boundary to mitigate discriminatory outcomes over the stream. Experiments on 8 real-world and 1 synthetic datasets from different domains with varying class imbalance demonstrate the superiority of our method over state-of-the-art fairness-aware stream approaches with a range (relative) increase [11.2\%-14.2\%] in balanced accuracy, [22.6\%-31.8\%] in gmean, [42.5\%-49.6\%] in recall, [14.3\%-25.7\%] in kappa and [89.4\%-96.6\%] in statistical parity (fairness).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.