Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Data-driven advice for interpreting local and global model predictions in bioinformatics problems (2108.06201v2)

Published 13 Aug 2021 in stat.ML, cs.LG, and stat.CO

Abstract: Tree-based algorithms such as random forests and gradient boosted trees continue to be among the most popular and powerful machine learning models used across multiple disciplines. The conventional wisdom of estimating the impact of a feature in tree based models is to measure the \textit{node-wise reduction of a loss function}, which (i) yields only global importance measures and (ii) is known to suffer from severe biases. Conditional feature contributions (CFCs) provide \textit{local}, case-by-case explanations of a prediction by following the decision path and attributing changes in the expected output of the model to each feature along the path. However, Lundberg et al. pointed out a potential bias of CFCs which depends on the distance from the root of a tree. The by now immensely popular alternative, SHapley Additive exPlanation (SHAP) values appear to mitigate this bias but are computationally much more expensive. Here we contribute a thorough comparison of the explanations computed by both methods on a set of 164 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. For random forests, we find extremely high similarities and correlations of both local and global SHAP values and CFC scores, leading to very similar rankings and interpretations. Analogous conclusions hold for the fidelity of using global feature importance scores as a proxy for the predictive power associated with each feature.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)