Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

CNN-based Two-Stage Parking Slot Detection Using Region-Specific Multi-Scale Feature Extraction (2108.06185v1)

Published 13 Aug 2021 in cs.CV

Abstract: Autonomous parking systems start with the detection of available parking slots. Parking slot detection performance has been dramatically improved by deep learning techniques. Deep learning-based object detection methods can be categorized into one-stage and two-stage approaches. Although it is well-known that the two-stage approach outperforms the one-stage approach in general object detection, they have performed similarly in parking slot detection so far. We consider this is because the two-stage approach has not yet been adequately specialized for parking slot detection. Thus, this paper proposes a highly specialized two-stage parking slot detector that uses region-specific multi-scale feature extraction. In the first stage, the proposed method finds the entrance of the parking slot as a region proposal by estimating its center, length, and orientation. The second stage of this method designates specific regions that most contain the desired information and extracts features from them. That is, features for the location and orientation are separately extracted from only the specific regions that most contain the locational and orientational information. In addition, multi-resolution feature maps are utilized to increase both positioning and classification accuracies. A high-resolution feature map is used to extract detailed information (location and orientation), while another low-resolution feature map is used to extract semantic information (type and occupancy). In experiments, the proposed method was quantitatively evaluated with two large-scale public parking slot detection datasets and outperformed previous methods, including both one-stage and two-stage approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube