Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining (second-order) graph-based and headed-span-based projective dependency parsing (2108.05838v2)

Published 12 Aug 2021 in cs.CL

Abstract: Graph-based methods, which decompose the score of a dependency tree into scores of dependency arcs, are popular in dependency parsing for decades. Recently, \citet{Yang2022Span} propose a headed-span-based method that decomposes the score of a dependency tree into scores of headed spans. They show improvement over first-order graph-based methods. However, their method does not score dependency arcs at all, and dependency arcs are implicitly induced by their cubic-time algorithm, which is possibly sub-optimal since modeling dependency arcs is intuitively useful. In this work, we aim to combine graph-based and headed-span-based methods, incorporating both arc scores and headed span scores into our model. First, we show a direct way to combine with $O(n4)$ parsing complexity. To decrease complexity, inspired by the classical head-splitting trick, we show two $O(n3)$ dynamic programming algorithms to combine first- and second-order graph-based and headed-span-based methods. Our experiments on PTB, CTB, and UD show that combining first-order graph-based and headed-span-based methods is effective. We also confirm the effectiveness of second-order graph-based parsing in the deep learning age, however, we observe marginal or no improvement when combining second-order graph-based and headed-span-based methods. Our code is publicly available at \url{https://github.com/sustcsonglin/span-based-dependency-parsing}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Songlin Yang (42 papers)
  2. Kewei Tu (74 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.