Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Combining (second-order) graph-based and headed-span-based projective dependency parsing (2108.05838v2)

Published 12 Aug 2021 in cs.CL

Abstract: Graph-based methods, which decompose the score of a dependency tree into scores of dependency arcs, are popular in dependency parsing for decades. Recently, \citet{Yang2022Span} propose a headed-span-based method that decomposes the score of a dependency tree into scores of headed spans. They show improvement over first-order graph-based methods. However, their method does not score dependency arcs at all, and dependency arcs are implicitly induced by their cubic-time algorithm, which is possibly sub-optimal since modeling dependency arcs is intuitively useful. In this work, we aim to combine graph-based and headed-span-based methods, incorporating both arc scores and headed span scores into our model. First, we show a direct way to combine with $O(n4)$ parsing complexity. To decrease complexity, inspired by the classical head-splitting trick, we show two $O(n3)$ dynamic programming algorithms to combine first- and second-order graph-based and headed-span-based methods. Our experiments on PTB, CTB, and UD show that combining first-order graph-based and headed-span-based methods is effective. We also confirm the effectiveness of second-order graph-based parsing in the deep learning age, however, we observe marginal or no improvement when combining second-order graph-based and headed-span-based methods. Our code is publicly available at \url{https://github.com/sustcsonglin/span-based-dependency-parsing}.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)