Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Approach to Partial Observability in Games: Learning to Both Act and Observe (2108.05701v1)

Published 11 Aug 2021 in cs.LG, cs.AI, cs.CV, and cs.GT

Abstract: Reinforcement learning (RL) is successful at learning to play games where the entire environment is visible. However, RL approaches are challenged in complex games like Starcraft II and in real-world environments where the entire environment is not visible. In these more complex games with more limited visual information, agents must choose where to look and how to optimally use their limited visual information in order to succeed at the game. We verify that with a relatively simple model the agent can learn where to look in scenarios with a limited visual bandwidth. We develop a method for masking part of the environment in Atari games to force the RL agent to learn both where to look and how to play the game in order to study where the RL agent learns to look. In addition, we develop a neural network architecture and method for allowing the agent to choose where to look and what action to take in the Pong game. Further, we analyze the strategies the agent learns to better understand how the RL agent learns to play the game.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.