Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On minimal representations of shallow ReLU networks (2108.05643v1)

Published 12 Aug 2021 in cs.LG, math.ST, and stat.TH

Abstract: The realization function of a shallow ReLU network is a continuous and piecewise affine function $f:\mathbb Rd\to \mathbb R$, where the domain $\mathbb R{d}$ is partitioned by a set of $n$ hyperplanes into cells on which $f$ is affine. We show that the minimal representation for $f$ uses either $n$, $n+1$ or $n+2$ neurons and we characterize each of the three cases. In the particular case, where the input layer is one-dimensional, minimal representations always use at most $n+1$ neurons but in all higher dimensional settings there are functions for which $n+2$ neurons are needed. Then we show that the set of minimal networks representing $f$ forms a $C\infty$-submanifold $M$ and we derive the dimension and the number of connected components of $M$. Additionally, we give a criterion for the hyperplanes that guarantees that all continuous, piecewise affine functions are realization functions of appropriate ReLU networks.

Citations (14)

Summary

We haven't generated a summary for this paper yet.