Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Amended Gradient Descent for Efficient Spectral Reconstruction from Single RGB Images (2108.05547v1)

Published 12 Aug 2021 in eess.IV and cs.CV

Abstract: This paper investigates the problem of recovering hyperspectral (HS) images from single RGB images. To tackle such a severely ill-posed problem, we propose a physically-interpretable, compact, efficient, and end-to-end learning-based framework, namely AGD-Net. Precisely, by taking advantage of the imaging process, we first formulate the problem explicitly based on the classic gradient descent algorithm. Then, we design a lightweight neural network with a multi-stage architecture to mimic the formed amended gradient descent process, in which efficient convolution and novel spectral zero-mean normalization are proposed to effectively extract spatial-spectral features for regressing an initialization, a basic gradient, and an incremental gradient. Besides, based on the approximate low-rank property of HS images, we propose a novel rank loss to promote the similarity between the global structures of reconstructed and ground-truth HS images, which is optimized with our singular value weighting strategy during training. Moreover, AGD-Net, a single network after one-time training, is flexible to handle the reconstruction with various spectral response functions. Extensive experiments over three commonly-used benchmark datasets demonstrate that AGD-Net can improve the reconstruction quality by more than 1.0 dB on average while saving 67$\times$ parameters and 32$\times$ FLOPs, compared with state-of-the-art methods. The code will be publicly available at https://github.com/zbzhzhy/GD-Net.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.